PUTNAM PRACTICE SET 24: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. Find a polynomial P(z,y) € Rz, y] with the property that for each
real number r, we have
P([r], [2r]) =0,
where [z] is always the integer part of the real number x (i.e., the largest integer
less than or equal to x).

Solution. We let
P(z,y) = (y—2z)-(y —2z—-1)
and note that for each real number r, we have that
either [2r] =2 [r], or [2r] = 2[r] + 1,
which means that P([r],[2r]) = 0 for each r € R.

Problem 2. Show that the curve in the cartesian plane given by the equation:
2+ 3zy+1y° =1

contains exactly one set of three points A, B and C' which are the vertices of an
equilateral triangle.

Solution. The whole key to this problem is the following factorization:
Pyt ey —1=(+y-DE*+y’ +1-ay+z+y)
which comes from the identity:
2yt 28 - Bayr = (v y+2) (2% 97 4 22— ay —yz — 22).
Now, using the fact that

1 1 1
Pyl -aytaoty=c-(@-y?+ g @)+

we get that besides the line z +y = 1, the given plane curve contains only the point
(—1,-1). So, indeed, there is only one triple of points on the given curve which are
the vertices of an equilateral triangle; one of those three points must be (—1, —1),
while the other two points lie on the line z + y = 1 being exactly % - h units apart

from the point (%, %), which is the foot of the perpendicular line from (—1,—1) to

the line  +y = 1, where h is the length of the height from (—1,—1) to this line,
i.e.,

3
h == \/5 . 5.
So, the other two vertices of the equilateral triangle are

<1+\/§ 1—\/§> i (1—\/3 1+\/§>

2 72 2 72
1
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Problem 3. Let {a,}nen be a sequence of integers satisfying the two properties:
a; =1 for i = 1,.. .,2020 and ap = Gp—1 + Ap—2020 for n > 2021.

Show that for each positive integer M, there exists some integer k > M + 2020 such
that each one of the integers ay, ..., ar12018 are divisible by M.

Solution. We extend the definition of the sequence {a,} for all n € Z simply by
enforcing the condition
Op = Gp—1 + Gn—2020
for all n € Z. Note that we can solve for ag from

@2020 = G2019 + Ao

and get ag = 1. Similarly, we solve for a_; from

a2019 = G2018 + a—1

and get a_; = 1. Furthermore, a_, = 1 for each k£ € {0,1,...,2018}. Then we
have a_s919 = 0 because

a1 = ap + a—2019
and a; = ap = 1. Continuing to solve backwards, we get

a_y, = 0 for k = 2019, 2020, ..., 4037.

For example, note that
a_2017 = G-2018 + A—4037
and a_s017 = a_2018 = 1.

Therefore, there exist 2019 consecutive integers in our recurrence sequence, all
of them equal to 0.

On the other hand, for any given positive integer M, any recurrence sequence is
eventually periodic modulo M. Furthermore, since for our sequence we can solve
also backwards (as shown above), the sequence is actually periodic modulo M.
(The same trick can be applied to the Fibonacci sequence, for example,
to show that for any integer M there exist infinitely many terms in the
Fibonacci sequence all of them divisible by M.)

So, since at one point we had 2019 consecutive integers in our sequence all
divisible by M (simply because those integers are all equal to 0), then we can find
such consecutive integers divisible by M in our sequence with indices arbitrarily
large.

Just to give more details to our reasoning: first of all, since there exist finitely
many residue classes modulo M (for any given positive integer M ), there must exist
two distinct tuples of 2020 consecutive elements in our sequence which give us the
same residue classes modulo M. So, there exist two distinct 2020 consecutive tuples
of elements in our sequence

(Ak; @hy1s - -5 Qry2019) and (ag, Geyt, ..., Gry2019)
such that ag+; = agr; (mod M) for each i = 0,1,...,2019, then our linear recur-
rence formula yields that
k42020 = Ak42019 + Gk = Qp42019 + Q¢ = Apq020 (mod M)

and more generally, inductively, we get that for each nonnengative integer i, we
have that
ak+i = ap4; (mod M).
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But also, going backwards, we have
Ap—1 = Ap42019 — k12018 = Gg12019 — Ge42018 = Gg—1 (mod M)
and then also, for alli € N, we have
ak—; = ag—; (mod M),

thus showing that our linear recurrence sequence is periodic modulo M. Since at one
moment (for the indices k = —2019, —2020, ..., —4037) we have 2019 consecutive
integers in our sequence all divisible by M (since in that case, they’re all equal to
0), then the same phenomenon repeats infinitely often, i.e., there exist arbitrarily
large positive integers k such that ay,ak41,...,ak+2018 are all divisible by M, as
desired.

Problem 4. Let n be a positive integer and let § € R such that 6/ is an irrational
number. For each k =1,...,n, we let

(0+%)
ap =tan (0 + — | .
n

w = 29" = cos(2nh) + isin(2nd).

Compute aitast-tan

Solution. We let

For the polynomial
Pl)=(14iz)" —w- (1 —ix)",
we compute for each k = 1,...,n that
Plag) = cos(&—&—%’“) —|—is}if(9+%”) n_w. cos(&—f—%”) —is}i?(e—i—%ﬂ) "
cos (9—&—7) cos (9—}—7)

and so, letting

£k 1= e(n@—&-k)‘n’)-i’
we see that _
Er —W: €k
Play) = ——F—F~ =0
cos™ (9 + 7“)
because
ETk — 62n0~i = w.
Ek
In conclusion, the polynomial P(z) vanishes at each point ay for k =1,...,n and

since it also has degree n and leading coefficient equal to
en =" —w- (=),

we conclude that
P(z)=cp- H(z —ag).
k=1

So,
Dok
k=1 Ok _ —Cp—1

HZ:I ak (=1)neo’

where we write
P(z) =c,2" + Cno12" N ez + .
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Clearly,
co=1-wandc, 1 =ni"t —w-n(—=1)""5"" =ni"t (14 w(-1)"),

which means that "

Zﬁ:l ag _ 1+ w(_l)n . n(_i)nfl.

[ ar 1—w
As a fun fact, if n is odd, then the above quotient is always an integer
because then 1 +w(-1)"=1—w.




